Understanding the Impact of Drought on Crop Yield in South and North Carolina

Junyu Lu, Gregory J. Carbone Department of Geography, University of South Carolina, Columbia

Introduction

Drought Classification

Meteorological Drought

Absence or reduction of precipitation over a region, precipitation are used commonly as primary indicator

Socio-economic drought

Associated deficits of water resources systems leading to failure to meet the demand of some economic goods and social needs

Heim 2002, Mishra and Singh 2010

Agricultural drought

Occurs at a critical time during the growing season resulting in clining soil moisture and crop failure

, drological drought

Precipitation deficits over a prolonged period that affect surface or subsurface water supply

Data Source

- Long-term county-level agriculture statistics were obtained from USDA's National Agricultural Statistics Service (NASS) (<u>http://www.nass.usda.gov/</u>).
- County-level drought indices (Monthly PDSI, Palmer Z-index, 3-Month SPI, 6-Month SPI, 9-Month SPI) are obtained from Dynamic Drought Index Tool (DDIT) For Basins In North and South Carolina (<u>https://www.dnr.sc.gov/drought/</u>).

Drought Indices

- Monthly PDSI (Palmer Drought Severity Index)
- Based on the supply-and-demand concept of the water balance equation by using long term historical precipitation, temperature data and also Available Water Content (AWC) of the soil.

Palmer Z-index

- Palmer Z-index can be expressed as the "Moisture Anomaly Index." Each monthly Z value is a measure of the departure from normal of the moisture climate for that month.
- SPI (Standardized Precipitation Index)
- SPI is based only on precipitation data. It is standardized into different time scale and can be comparable over space and time.

State Crop Yield Trend

County Corn Yield Trend

Research Question?

- How can we separate irregular roughness caused by weather related factor from long-term trend caused by science advancement and technology development?
- What are the drought impacts on crop yield?

Trend Simulation Method: Simple Linear Regression Model

- Simple Linear Regression Model
- $y = \beta_0 + \beta_1 x + \varepsilon$
- Where
- β_0 , β_1 are unknown constants
- x represents time (year)
- y represents crop yield
- ε represents random effects

Trend Simulation Method: Moving Average Model

- Moving average smoothing can be used to smooth out the irregular roughness and high-frequency variation.
- Centered Moving Average: use values both before and after the current time
- Half a decade (5 years) and One decade (10 years)
- 5 Years Centered Moving Average Model

$$mx_{t} = \frac{1}{5}x_{t-2} + \frac{1}{5}x_{t-1} + \frac{1}{5}x_{t} + \frac{1}{5}x_{t+1} + \frac{1}{5}x_{t+2}$$

• 10 Years Centered Moving Average Model

$$mx_{t} = \frac{1}{20}x_{t-5} + \overset{4}{\overset{0}{a}} \frac{1}{10}x_{t+j} + \frac{1}{20}x_{t+5}$$

Corn Yield in Beaufort, NC

Decomposition Model

Additive Decomposition Model:

 $x_t = Trend + Weather related factor + Random$

Multiplicative Decomposition Model:

*x*_t = *Trend* **Weather related factor* * *Random*

Drought Year vs No Drought Year

Drought Year vs No Drought Year

Results

- Centered moving average (CMA) model performed better than linear regression model to simulate the long-term trends of the crop yield.
- The multiplicative decomposition model did better at separating out high frequency variation than the additive decomposition model.
- Detrended corn yield showed a higher level of correlation with 3-Month SPI in June, July and August than the other months and detrended soybean yield showed a higher level of correlation with 3-Month SPI in July, August and September.

Discussion

- In this research, we are focused on drought impact on crop yield.
- In the future, we need to incorporate other extreme weather impacts, such as flood, heat wave and tropical storm.

Thank you!

Questions or comments?

